
4"--.i-

A Hybrid Procedural/Deductive Executive

For Autonomous Spacecraft *

Barney Pell _ Edward B. Gamble § Erann Gat § Ron Keesing t James Kurien t

William Millar t P. Pandurang Nayak _t Christian Plaunt t Brian C. Williams II

Abstract

The New Millennium Remote Agent (NMRA) will be the

first AI system to control an actual spacecraft. The space-

craft domain places a strong premium on autonomy and

requires dynamic recoveries and robust concurrent execu-

tion, all in the presence of tight real-time deadlines, changing

goals, scarce resource constraints, and a wide variety of pos-
sible failures. To achieve this level of execution robustness,

we have integrated a procedural executive based on generic

procedures with a deductive model-based executive. A pro-

cedural executive provides sophisticated control constructs

such as loops, parallel activity, locks, and synchronization

which are used for robust schedule execution, hierarchical

task decomposition, and routine configuration management.

A deductive executive provides algorithms for sophisticated

state inference and optimal failure recovery planning. The

integrated executive enables designers to code knowledge via

a combination of procedures and declarative models, yield-

ing a rich modeling capability suitable to the challenges of

real spacecraft control. The interface between the two ex-

ecutives ensures both that recovery sequences are smoothly

merged into high-level schedule execution and that a high

degree of reactivity is retained to effectively handle addi-

tional failures during recovery.

1 Introduction

_,Ve are developing the first on-board AI system to control an

actual spacecraft (Bernard et al. 1998). The mission, Deep

Space One (DS-1), is the first in NASA's New Millennium

"This paper describes work partially performed at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract.
from the National Aeronautics and Space Administration.

_RIACS, NASA Ames Research Center, MS 26!t/2, Moffett Field,
CA 94035.

ItNASA Ames Research Center, MS 269/2, Moffett Field, CA
94035.

tCaelum Research, NASA Ames Research Center, MS 269/2, Mof-
fett Field, CA 94035.

SJet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109.

Program (NMP), an aggressive series of technology demon-
strations intended to push Space Exploration into the 21st

century. DS-1 will launch in mid-1998 and will navigate

by near-Earth asteroid 3352 McAuliffe, Mars, and comet

West-Kohoutek-Ikemura, taking pictures and sending back

inforraation to scientists on Earth. One key technology to

be demonstrated is spacecraft autonomy, including robust

plan execution (Pellet al. 1997b). Since aborting a plan

and taking time to re-plan can cause the spacecraft to miss
critical mission activities, execution of plans must be highly

robust. Hence, the execution system must maintain space-

craft safety and successfully execute the plan, even in the

presence of hardware faults and other unexpected events.

This work is being implemented as part of the New Mil-

lennium Remote Agent (NMRA) architecture (Pellet al.

1997a). This architecture integrates traditional real-time

monitoring and control with constraint-based planning and

scheduling (Muscettola 1994), robust multi-threaded execu-

tion (Gat 1996), and model-based diagnosis and reconfigu-

ration (Williams & Nayak 1996; 1997).

Pall et aI. (1997b) describes the approach we have taken

to the automatic generation of robust plans, which incorpo-

rate flexibility to be used by the execution system in case

problems or opportunities arise during execution. This pa-

per focuses on the execution system itself. In particular, we

found it necessary to develop a hybrid procedural and deduc-

tive executive in order to achieve the high levels of reliability

required in the autonomous spacecraft domain. A procedu-

ral executive provides sophisticated control constructs such

as loops, parallel activity, locks, and synchronization which

are used for robust schedule execution, hierarchical task de-

composition, and routine configuration management. A de-

ductive executive provides algorithms for sophisticated state

inference and optimal failure recovery planning. The inte-

grated executive enables designers to code knowledge via a
combination of procedures and declarative models, yielding

a rich modeling capability suitable to the challenges of real

spacecraft control. The interface between the two executives

ensures both that recovery sequences are smoothly merged

into high-level schedule execution and that a high degree of

reactivity is retained to effectively handle additional failures

during recovery.

This paper discusses our domain, the component execu-

tion technologies, and the approach we took to integrating

these technologies into a hybrid executive that supports the

strengths of each while minimizing potentially negative in-
teracl;ions between the two systems. The paper is organized

as follows. Section 2 discusses the spacecraft domain and re-

quirements which influence our design. Section 3 describes

ourproblemandhybridapproachtoexecutionsystems.Sec-
tion4describesthecapabilitiesinourproceduralexecutive.
Section5addressesthecapabilitiesin thedeductiveexecu-
tive.Section6showshowwehaveintegratedthetwosys-
tems.Section7discussessomekeypointsaboutourdesign.
Wethenconsiderrelatedworkandconclude.

2 Domain and Requirements

The spacecraft domain presents a number of challenges for
robust plan execution.

2.1 High Reliability

A central requirement of spacecraft operation is high relia-

bility, since spacecraft are expensive and often unique. Part

of this high reliability is achieved through the use of reli-
able hardware. However, the harsh environment of space or

the inability to test in all flight conditions can still cause

unexpected hardware failures. When hardware failures or

unexpected flight conditions do occur, the software system

is required to compensate for such contingencies when possi-
ble. This requirement dictates the use of an executive with

elaborate system-level fault protection capabilities. Such

art executive can rapidly react to contingencies by retry-

ing failed actions, reconfiguring spacecraft subsystems, or

putting the spacecraft into a safe state to prevent further,

potentially irretrievable, damage.

2.2 Concurrent Temporal Processes

Many devices and systems must be controlled, leading to

multiple threads of complex activity. These concurrent pro-
cesses must be coordinated to control for interactions, such

as vibrations of the thruster system violating stability re-

quirements of the camera. Also, activities may have precise

real-time constraints, such as taking a picture of an asteroid

during a short time period of observability.

2.3 Interacting Recoveries

A particularly challenging problem in the design of a space-
craft fault protection system arises from the combination of

the above two properties: recovering failed activities in the

presence of concurrent activity. As an example, consider two

spacecraft subsystems in DS-I: the engine gimbal (EG) and

the solar panel gimbal (SPG). A gimbai is part of a physical

system that enables it to rotate. For example, the engine

nozzle can be rotated to point in various directions without

changing the spacecraft orientation, and the solar panels can

be independently rotated to track the sun. In DS-1, both

sets of gimbals communicate with the main computer via a

shared board called the gimbal drive electronics (GDE). If

either system experiences a communications failure, one way

to reset the system is to power-cycle (turn on and off) the

GDE. However, resetting the GDE to fix one system also re-

sets the communication to the other system. In particular,

resetting the engine gimbal, to fix an engine problem, causes

temporary loss of control of the solar panels. Thus, fixing

one problem can cause new problems to arise. To avoid this,

the recovery system needs to take into account global con-

straints from nominal schedule execution, rather than just

making local fixes in an incremental fashion. Examples like

this drove the design of our hybrid execution system.

3 Approach

In this section we first describe the problem we faced, and

then our approach to solving it.

3.1 The Problem

Complex execution of spacecraft plans requires capabilities

of both procedural and declarative execution systems.

On the one hand, execution requires reactivity, time-

sensitivity, and sophisticated control constructs such as loops,
parallel activity, locks, and synchronization. The standard

approach to this is to build executives which interpret direc-

tives in a rich procedural language, make fast choices based

on contextual knowledge, and choose alternatives when pre-
vious choices fail (Firby 1978).

However, this strict procedural approach has its limita-

tions -- it is hard to procedurally encode optimal choices in

all, possibly degraded, situations. Specifically, execution re-

quires choosing component configurations with different ca-

pabilities and costs. Similarly, robust recovery may require
novel combinations of actions in order to trade off costs and

benefits. For example, the propulsion system on the Cassini

spacecraft (Brown, Bernard, & Rasmussen 1995) has a com-

plex set of valves, including explosive pyro valves which can

change states only once, and ordinary valves with varying

amounts of wear and tear. It is difficult to procedurally
express the right valve choices to redirect fluid flow while

minimizing costs and risks in all possible situations.
On the other hand, a deductive executive of the form de-

veloped by Williams & Nayak (1996) can reason efficiently

about such tradeoffs using declarative models of the costs

and benefits of configurations and recoveries. Furthermore,

the compositional nature of such models allows compact rep-

resentations of the costs and benefits of each possible choice.

Finally, deductive executives have sophisticated state in-

ference algorithms, supporting the identification of hidden

state, failed sensors, and multiple faults. However, declara-

tive models can lack the flexibility and richness of activity

description found in procedural execution systems. For ex-

ample, the Livingstone system (Williams & Nayak 1996) is

based on a propositional temporal logic which does not ex-

plicitly model metric time or execution loops. Thus it is
hard to encode knowledge like:

To send a signal down to earth via an antenna,

first turn off the antenna's exciter, then turn on

the antenna's power supply, wait 5 seconds, and

turn the exciter on again. 1

3.2 Hybrid Approach

From this we see that the procedural and deductive ap-

proaches to execution have complementary strengths and

weakness. Hence, our approach is to develop a hybrid exec-
utive, as follows:

• Use a procedural executive for timing, control knowl-
edge, schedule execution, hierarchical task decomposi-

tion, and routine configuration handling.

• Use a deductive executive for state inference, novel

responses based on global context, and cost/benefit
analysis.

lThe reason for this requirement is that turning on the power sup-

ply sends a surge of power which would destroy the sensitive exciter.

Hence the exciter should be switched off while the surge is happening,
and then switched on again.

• Work out clear interfaces between the two systems to

exploit the strengths of each.

Note that some divisions are arbitrary, since certain ca-

pabilities exist in both systems. This gives the designer flex-

ibility to choose the best system and language for specific

purposes. For example, while routine configuration manage-

ment can be handled either procedurally or declaratively, we

have chosen to handle it procedurally. In our treatment, the

procedural executive draws on the planning capability of the

deductive executive by using it as a recovery expert, sending

it a set of global constraints that ensure that the resulting

recovery plans can be integrated within the current execu-
tion context.

In the next sections we describe the procedural exec-
utive and the deductive executive. To reflect their roles

in the NMRA, we will often refer to the procedural execu-

tive as Exec and the deductive executive as MIR, the mode-

identification and reconfiguration system.

4 Procedural Executive

Our procedural executive is based upon a sophisticated script-

ing language called Executive Support Language, (ESL) (Gat

1996), for describing control constructs necessary for exe-

cution. Such constructs manage concepts of time, events,

multiple methods, class hierarchies, and generic procedures.
Some of these constructs are summarized later in this sec-

tion. An executive also needs a source of state update knowl-

edge. In NMRA, Exec benefits from being insulated from

the hardware details by relying on the results of the mode

identification (?vii) component of MIR (see Section 5).

Spacecraft

achieve, maintain, and monitor properties required for each

task, and resolve task resource conflicts.

A task is represented at run-time by an independent ex-
ecution thread. Threads communicate with other theads di-

rectl:l via signals, or indirectly via changes to a database.

Receipt of a signal oi" notification of a change to the database

are examples of events.
Each activity uses the (with-maintained-properties)

construct to declare those properties that it requires main-

tained over its interval of execution. In this way, Exec un-

derstands the constraints which support the entire current

execution context. When a property is achieved and re-

served for a task, it is said to be locked until the task re-

linquishes it, so that other tasks will not be permitted to

violate that property. Of course, the locks reflect properties

true in the current state, and sometimes these properties

can change despite the best efforts of the software system to
maintain them. For example, switches on a spacecraft some-

times change state accidentally. In this case, we describe the

properties as lost or violated, and the tasks requiring them

as unsupported. 2
Ir_ the event that some property is lost or otherwise un-

achievable without the help of a recovery expert, Exec sus-

pends the unsupported threads, formulates a query based on

the active constraints, and uses the automatic-recoveries
thread to send the query off to the recovery expert (in this

case, MIR).

When the recovery expert returns an action, Exec per-

forms the action and then re-activates any suspended threads

which may now be supported. The threads then attempt to
re-establish their maintained conditions. Note that most

Exec procedures count the number of times they have re-

tried a particular approach, and try something else or give

up if this retry counter exceeds a threshold.
The automatic-recoveries thread remains in action for-

Control _ ever, so unsatisfied constraints following execution of some

C°rnrnan/_ t_ Achieve _ recovery step will lead to a new recovery request.

Propertyf We now elaborate on some of the key constructs we haveM°nit°rSdeveloped within the procedural executive that support the

Tasks Property Locks behavior described above.

) f_----""_ A 10

B ON Database

C 0

Maintain Properties
vaemon

Figure 1: Procedural Executive Resource Manager

The executive manages a set of concurrent control tasks,

as shown in Figure 1. Each control task requires a set of

resources, or properties, to be established and maintained

over some period of time. For example, the activitY of tak-
ing pictures with a camera requires that the camera is on

and functional. If some other activity requires the camera

to be off, these two activities compete for the resource of

controlling the camera's power state. The executive must

4.1 Achieving properties

(achJ.eve <property>)

• If this is the first thread to request the property, then

execute an achievement method for the property.

• When achievement is successful, signal other waiting
threads.

• If some other thread is already achieving the property,
then wait for it to finish.

• If the property is inconsistent with a current lock, ei-

ther wait for lock to be released or fail immediately

(based on preferences set by the invoking thread).

4.2 Maintained Properties

(vith-maintained-properties <properties> body)

2Note that property locks can serve a role similar to typical locks in

multi-_hreaded systems, such as semaphores and mutexes. However,

there Ls a major difference since these property locks are database-

relative, and can hence be "taken" by the outside world changing.

Note also that naive use of property locks can result in deadlock, just

as occars with standard locks in multl-threaded operating systems.

• If propert=es ,are all currently true, body is executed.

• If properties are false, the executive tries to achieve
them first.

• Once they are true, the executive locks the properties

and executes body.

• If the properties become false during execution of body,

signal this loss and let the enclosing context of body

choose the response.

4.3 Device Management Idioms

Devices and classes are formalized using generic descrip-
tions. Individual devices, switches, etc., are then modeled
as instances of these classes.

(define-device-class :camera

:power-function # 'fsc-power-request

:talk-function #'camera-talk-msg)

(define-device :camera_A :camera

:powered-thru :power_bus_ I
:switched-thru :fsc_camera_swl

:ready-state ((:health_state :ok)

(:power_state :on)))

Based on these device idioms, we have defined generic

procedures for device configuration and management:

(with-selected-device <class>

(do-activity))

This construct selects a device of the class, achieves its

ready-state, and then locks the properties of that ready-

state and maintains them as it executes the enclosed activity.

Based on the camera definition above,

(with-selected-device :camera (take-pictures))

would select a camera (say camera_A), achieve its ready

state of being powered oil and healthy, and then take pic-
tures within a context that ensures that the health and

power of tile camera are maintained throughout picture tak-

ing.

4.4 Recovering failed properties

In the case where a maintained property is lost (for exam-

pie, device switch flips off unexpectedly or the engine per-

forms an automatic shutdown), the enclosing context of the

(with-maintained-properties) form determines the ap-

propriate response. If no response is defined for the enclosing

context, then the form fails.

(with-automatic-recoveries body)

This form indicates that the response to lost properties

within body is to suspend the thread while waiting for an

automatic recovery, and then retry the body. Note that this
is only one way to create an enclosing context to handle

the lost properties notification. For example, a thread could

establish its own local recovery expert, or decide to try al-

ternative methods if properties are lost, rather than waiting

for a automatically generated recovery.

4.4.1 Automatic Recoveries Thread

A special thread it, the executive manages the property

locks. Whencvcr some property lock is violated:

1. Suspend all tasks who have a violated lock.

2. Ask for an automatic recovery for all required locks.

3. Wait for a recovery action to be generated in response
to this query.

4. Execute the recovery action.

5. Signal recovery-event.

The effect of signaling recovery-event is to wake up all

threads who were suspended waiting for a property which

was restored (possibly as a result of the recovery action).

Each awakened thread then retries the body, attempting to

re-establish all their required properties.

For properties which were restored by the recovery ac-

tion, this will succeed. For properties which are still failed,
the affected threads will block again, and wait for another

recovery step.
If the automatic-recoveries thread fails to return with

a recovery action while some threads are blocking on re-
quired properties, the waiting tasks fail automatically. This

can happen either when the recovery expert believes no fur-

ther actions need be achieved, or when it fails to find a

solution to the recovery request.

5 Deductive Executive

Tlle deductive executive can be viewed as a discrete model-

based controller that attempts to keep the spacecraft state

on a trajectory that achieves a set of high-level input prop-

erties (analogous to the set-point of a continuous controller).
In the NMRA architecture, the dedective executive is also

referred to as MIR reflecting that control is achieved through

mode identification (the sensing component) and mode re-

configuration (the actuation component).
MIR is model-based in tim sense that it uses a single

declarative, compositional model of the spacecraft to sup-

port all of its capabilities. MIR views each component as

a finite state machine, and the entire spacecraft as concur-

rent, synchronous state machines. Nodes in the graph rep-

resent behavioral modes, and arcs represent possible transi-

tions among modes, some exogenous, some commandable.

Modes partition the state space of the component, and axe

specified using well-formed formulae in a propositional lan-

guage.

Mode identification (MI) involves tracking the most likely

trajectory of the spacecraft state by observing all commands

that axe sent to the spacecraft and monitoring information
from spacecraft sensors. Each point in a trajectory con-

sists of the current behavioral mode of each component in

the spacecraft. Components include both hardware devices

and lower-level software modules. With modes identified,

more detailed component state information is available at

the propositional level.

MI provides a service for tracking and reporting state

changes to external software modules as they occur. The

idea is that external modules will typically be interested

only in higher-level properties (and corresponding higher-

level events) involving spaceraft state, rather than the finer

grained view available to MI. These abstract properties are

naturally defined as well-formed formulae, and are easily

trackedusingMI'sinferencecapabilities.IntheNMRAar-
chitecture,MI'sstateupdateserviceisanintegralpartof
theinterfacebetweenMIRandExec.

Modereconfiguration(MR)involvesgeneratingasequence
ofactionsthatmovesthespacecraftfromitsmostlikelycur-
rentstatetoanewstatethatachievesadesiredsetofprop-
erties.MRiscomprisedoftwostages.First,therequested
setofpropertiesto beachievedisusedtog,merateaspecific
goalstateforeachofthespacecraft'scomponents.Second,
asequenceofactionsthatmovethespacecraftfromthecur-
rentstateto thegoalstateisincrementallygenerated.We
referto thissecondstageasmodel-basedreactiveplanning
(MRP).Thesequencemaybeemptymeaningthatnoac-
tionisnecessary,orsequencegenerationmayfailmeaning
thatnoreconfigurationplancouldbefound.Eachactionin
thesequenceisaprimitiveoperatorfromtheperspectiveof
MIR'smodels.WhenMIRfunctionsasa stand-alonede-
ductiveexecutive,eachprimitiveoperatorcorrespondstoa
commanddirectlyexecutablebyanexternalsoftwaremod-
ule. In theNMRAarchitecture,Execspecifiesthedesired
propertiesofthegoalstateandprimitiveoperatorsin the
actionsequenceareboundto Execprocedures.

MIRusesalgorithmsadaptedandextendedfrommodel-
baseddiagnosis(deKleer& Williams1987;1989)toprovide
theabovefunctionality.Themainideabehindmodel-based
diagnosisis toidentifythesetofpossiblecomponentstates
inasystemgivenmodelsandobservationsofeachcompo-
nentin thesystem.In manysystems,especiallyspacecraft,
theremaybeinadequateinformationin themodelsandob-
servationstouniquelyidentify"everycomponent'sstateatall
times.Theapproachisthustoselectthemostlikely compo-

nent configuration from amongst those that are consistent
with the models and observations.

The primary workhorse in the deductiw." executive is an

extremely efficient conflict-directed best-first search algo-

rithm (Williams & Nayak 1996). The algorithm is exploited

by MI to identify the most likely" component configuration

consistent with models and observations, and by MR to se-

lect a specific goal state having a specified set of properties.

Additionally, a recent approach to MRP (Williams & Nayak

1997) exploits the algorithm at compile time to compile away

irrelevant information in system models in support of effi-

cient planning. Such reuse of algorithms and system models

across MIR's capabilities is a signature of the model-based
approach, and greatly simplifies the development and main-
tenance of our deductive executive.

6 Integration

Having described the procedural and deductive executives,

we now discuss how we combined these systems in the NMRA

architecture to form an integrated hybrid e_ecutive. Recall

that we exploit the procedural executive (gxec) for sched-

ule execution, hierarchical task decompositmn, and routine

configuration management, while the deductive executive

(MIR) is used both for state inference and failure response.

Here we make explicit that the communication inter-

face between Exec and MIR consists of the following: state

updates from MIR to Exec, recovery requests from Exec

to MIR, and recovery actions from MIR to Exec. Both

state updates and recovery requests are represented as well-

formed formulae in a propositional language shared between

Exec and MIR. Recovery actions are instantiations of Exec's

generic procedures.

To support state updates, MIR continually tracks the

most likely state of the spacecraft and informs Exec of changes

to any higher-level property it wants tracked. Exec uses this

state information to make task decomposition and configu-

ratioa management decisions, and to determine the truth

of properties needed by various threads of execution. Exec

procedures are generally written to exploit bllR by allowing

it to perform most inferences about spacecraft state that

may be required. The properties to be tracked for Exec by
NIIR are agreed upon at compile time, but we note that the

inter!_ace can be extended naturally to allow the notion of

registering tracked properties on the fly; such run-time flex-

ibilit-_" would allow for more efficient communication during

critical mission phases, and enable Exec activities to dy-

namically declare their own interface with MIR to improve

modularity.

E×ec also views MIR as a recovery expert. As events

occur in ExeCs schedule, it provides MIR with the current

set of properties that must be maintained to support all

active threads. At the time of invocation, some of these

properties will be true and some may be false. Using its

declarative models and knowledge of the current state, MIR

generates an action sequence that is expected to move the

spacecraft to a goal state in which all the requested prop-

erties are achieved. MIR provides the first action in this

sequence to gxec. Exec then executes this action and waits

for state updates from MIR to determine the status of its

required properties. The recovery interaction repeats with

MIR until either all desired properties are achieved or MIR

indicates that it can find no sequence to achieve those prop-
erties.

Three points are worth noting about the recovery in-

terface. First, note that NIIR sends only the first action

in the recovery sequence. This improves the reactivity of

the hybrid executive in two ways: Exec is free to make finer

grained recovery requests to reflect any changes in the status

of sclqedule execution since the previous request, while MIR

is free to factor any asynchronous spacecraft state changes

that may have occurred into its next recovery plan. Achiev-

ing this level of reactivity would be somewhat more difficult

if the Exec were expected to robustly execute a full plan re-

turned from MIR, for either the plan would then have to be

much larger to reflect all contingencies or Exec would have

to encode the robustness into tile primitive procedures over
whicla. MIR reasons.

Second, treating recovery actions as instances of generic

procedures fully exploits the representational strengths of

both systems. In practice, a natural modeling approach that

addressed both representional convenience and efficiency was

to encapsulate all issues related to metric time and iteration

inside Exec's procedural constructs. This was natural, for

instance, in the case of the downlink example provided in
Section 3.

Third, note that when used as a stand-alone configura-

tion system, MIR is free to generate any sequence of actions

resulting in a state with the requested properties. However,

as part of the hybrid executive, properties requested dur-

ing recovery are viewed as constraints on the entire recovery

plan, not just the goal state; this means that MIR must not

generate a recovery plan that is expected to deviate from

a requested property. Depending on the approach to MRP

that one adopts, this places additional computational re-

quirements on the reactive planner that may require one to

give up optimality or efficiency guarantees; this is indeed

the case for the approach used in (Williams & Nayak 1997),

for example. Combined with the requirement on Exec to

include all required properties as part of a recovery request,

this restriction on MIR ensures that recovery sequences are

smoothlymergedintonominalscheduleexecution,resolving
theproblemsofresourcepreemptionandinteractingrecov-
eriesdiscussedinSection2.

7 Discussion and Future Work

In this section we discuss ongoing issues and limitations in

our current hybrid executive and indicate future work.

7.1 Compositionality and Modularity

A major design goal within the NMRA is to develop modu-

lax, compositional representations of spacecraft subsystems.

A subtle limitation violating this goal exists in our current

recovery framework; it arises in the context of multiple fail-

ures, even when they occur in otherwise independent sub-

systems.

Consider two independent subsystems, managed seper-
ately by two Exec activities. Suppose one subsystem can be

recovered if it fails, and the other cannot. In the event of

independent failures in each subsystem, the recovery frame-

work would procede through two seperate recovery attempts

and result predictably in the recovery of one subsystem.
However, should those same failures instead occur in suf-

ficiently close temporal proximity, MIR would report the

failures to the Exec simultaneously. The Exec would then

form a recovery request to MIR asking for the recovery of

the conjunction of the two failed properties of interest. MIR

would then be forced to report that no such recovery is pos-

sible (since only one of the properties is recoverable) and the

Exec activities managing the independent subsystems would

both fail, resulting in the recovery of neither subsystem.

The standard response to this problem is to emphasize

that this limitation only arises in the case of simultaneous,

independent failures. For most missions, such events are

deemed sufficiently unlikely that they are considered accept-

able risks and beyond the scope of current fault protection

systems. It is worth noting that this risk assessment is based

in part on another limitation of current fault protection

frameworks: the mindset within the spacecraft community

is that unlikely hardware failures are less likely than a de-

sign flaw in a complex fault protection system that attempts

to support these unlikely failures. Our methods aim to ad-

dress this general concern first and foremost by simplifying
the design of robust execution systems to enable broader

fault coverage. We view modularity and compositionality

ms key requirements of a simple design.

The solution is to augment the recovery framework to en-

able consideration of partial recoveries, rather than attempt-

ing an all-or-nothing recovery. The open design issue is to

understand whether this is best accomplished with modi-

fications to Exec or MIR. In the former case, Exec could

be augmented to formulate a series of independent partial

recovery requests that would collectively achieve total fea-

sible recovery, giving priority to the most urgent activities.

The intuition here is to have Exec be more clever in asking
for only what it needs, though this would currently require

access to system models stored in MIR. Alternatively, MIR
could generate recovery plans that satisfy a maximal subset

of the requested properties, though in practice this would

require additional communication between Exec and MIR

to allow Exec to specify its preferences. These approaches

are complementary, and striking a proper balance between

them is an area of ongoing research.

7.2 Heterogeneous Knowledge Representation

A strength of our hybrid executive system is that we can

represent execution and repair knowledge in a procedural

way, a declarative way, or a combination thereof, depending
on the situation. This has proven to be useful in our domain.

On the flip-side, this approach can lead to a fair amount of

duplicated knowledge between Exec and MIR. We are cur-

rently developing an approach to permit maximal sharing
of domain models across the two systems that still affords

the representational power and convenience of our hybrid

approach. Note that this sharing of system models also sup-

ports the partial recovery issue addressed above by enabling
Exec to access system models during formulation of partial

recovery sequences.

7.3 Dealing with Uncertainty

Ambiguity management is a critical issue in spacecraft oper-

ations, primarily due to limitations in the number and type

of onboard sensors and the possibility of sensor failures. Re-

call that MIR currently tracks only the most likely trajec-

tory of the spacecraft, a restriction driven primarily by the

severely limited onboard computation available to it (10%

of a 20MHz CPU on DS-1). MIR deals with ambiguity by

assuming a worst-case scenario. For example, if there is am-

biguity as to whether a device has failed or a communication

path to that device has failed, MIR assumes that both have

failed. Although this construction of a worst-case trajectory

works well in the case of the DS-1 models, one can construct

models for which the worst-case scenario leads to subopti-

mal recoveries and unsound conclusions. We are working an

approach that allows MIR to track a small set of the most

likely trajectories to deal more cleanly with ambiguity in an
efficient manner.

Recall further that MI exports to Exec only the most

likely state of the world. Exec acts as if this state were

the true state and responds quickly in the face of new in-

formation. Hence, Exec obeys the rapid feedback principle

discussed by Schoppers (1995), and so is more likely to re-

main robust in the face of its unmodeled uncertainty. How-

ever, the lack of explicit communication of uncertainty and

ambiguity between MI and Exec makes it difficult to write

ambiguity resolution procedures in the Exec. At present,

such procedures must be either hard-wired in the code (e.g.,

do a calibration experiment before thrusting the engine) or

accessed exclusively via the interface with MR. We are pur-

suing an approach to active testing wherein Exec and MIR

cooperate to synthesize optimal sequences from system mod-

els that resolve ambiguity in a manner that preserves space-

craft safety and non-renewable resources.

8 Related Work

This paper has described the integration of procedural and

deductive capabilities within a hybrid executive. This sec-

tion discusses related work and addresses procedural reason-
ing systems that provide support for deduction, deductive

reasoning systems that provide support for reaction, hybrid

action description languages, and systems that cleanly sep-
arate a deductive planning or inference component from a

procedural execution component.

Like our Exec, RAPS (Firby 1978) is centered around

procedural reasoning, but provides language features to ex-

press deductive state inference (in the form of memory-rules)

and to incorporate the results of deductive problem-solving

systems (in the form of problem-solvers). RAPS alsopro-

vides constructs to indicate resource locks for thread syn-

chronization, but these constructs are used only at the low-

est level of the system.

PRS (Georgeff & Lansky 1987) is also similar to our

Exec in that it provides a language based around proce-

dural reasoning and it has been applied to support diagno-

sis (Georgeff & Lansky 1986) and plan execution (Georgeff,

Lansky, & Schoppers 1987). PRS also provides support for

procedures to perform recta-level reasoning about execution

context (Ingrand & Georgeff 1990) and some constructs to

express resource usage to prevent harmful task interactions

(e.g., the require construct).

Our hybrid executive extends the capabilities of these

systems (and similar procedural reasoners such as RPL (Mc-

Dermott 1993) and APEX (Freed & Remington 1997)) in

two major ways. The first is to provide explicit access to de-

ductive model-based reasoning for diagnosis and planning.
The second is to extend resource locks into a task-level con-

struct and to provide a way to use them to constrain the
results of deductive inference.

While Exec, RAPS and PRS may be viewed as procedu-

ral reasoning systems with deductive attachments, a large
body of work in automated reasoning has focused on deduc-

tive reasoning systems with procedural attachments (Gene-

sereth & Nilsson 1987). Most of this work tbcuses on using

procedures to support inference, rather than on describing

action in a dynamic environment. However, researchers have

recently begun exploiting the ability to view logical systems
like Prolog (Clocksin & Mellish 1981) through both an op-

erational and a denotational semantics to create logical de-

scriptions of procedures which can support both procedural

and deductive reasoning in the presence of a changing en-

vironment. Example systems include Golog (Levesque et

al. 1997; de Giacomo, Lesperance, & Levesque 1997) and

InterRAP (Muller & Pischel 1994).

Estlin, Chien, & Wang (1997) describe a hybrid approach

to action descriptions for planning systems that integrates

Hierarchical Task Network (HTN) planning, which can be

viewed as a procedural representation, with operator-based

planning, which deduces action sequences from first princi-
ples. Also related is the OSCAR architecture (Pollock 1998),

which integrates planning and reasoning activities within a

general-purpose defeasible reasoner.
Perhaps the most typical approach to developing a hy-

brid system is to develop separate components for both

styles of reasoning and define a clear interface to support

the interaction. Much of the research on integrating plan-

ning and execution (Wilkins et al. 1995; Bona.sso et al. 1997;
Hayes-Roth 1995; Simmons 1990; Currie & Tate 1991; Pell

et al. 1998, for example) takes this approach. Whereas

these systems generally treat the planner and executive as

functioning on widely different time-frames, our approach

exploits fast deduction to provide these capabilities within

the reactive execution loop itself.

In terms of separate components for procedural execu-

tion and deductive state inference (as opposed to planning),

Ogasawara (1991) describes a hybrid architecture based on

Bayesian networks and decision-theory for state inference,

where the results of inference can be used by a system ex-

ecuting high-level procedures. The Touring Machine archi-

tecture (Ferguson 1992) also provides a separate capability

for deductive world modeling that informs the activities of

a procedural executive.

9 Conclusion

This paper has described the integration of procedural and

deductive capabilities within a hybrid executive. While there

has been much research on integrating planning or state

inference with execution and on incorporating procedures

within deductive systems or vice-versa, comparatively lit-

tle work has attempted to do so within a fast reactive loop

or in the presence of concurrent activities. In addressing

such an integration, we found we had to constrain or mod-

ify the component systems to address a number of technical

problems. These problems included resource preemption,

interacting concurrent recoveries, and non-compositionality

of independent recoveries. The hybrid executive we have de-

veloped addresses all these issues to some extent, and per-

mits an extremely flexible and powerful representation of

knowledge while still remaining robust and reactive.

Now that we have this flexibility, a major challenge re-

mains to understand how to take most advantage of it. Key

issues include the following:

• Understanding the tradeoffs between knowledge repre-

sentations that are procedural, declarative, or hybrid.

• How to ensure consistency of knowledge across hetero-

geneous representations.

• Developing robust approaches to active sensing and

active diagnosis within a hybrid executive.

• More integrated approaches to uncertainty manage-
ment.

Lastly, it should be noted that our hybrid approach has

evoh, ed considerably over the last few years, based on lessons

in the real spacecraft domain. We have now developed hy-

brids between Livingstone (Williams & Nayak 1996) and two

different procedural execution systems: ESL (Gat 1996) and

RAPS (Firby 1978). On the basis of this, we hope that our

approach will be useful for integrating a wide variety of pro-
cedural and deductive executives. However, we found the

explicit support for language extensions in ESL to be ex-

tremely useful for developing the new language constructs

which enabled the strong integration discussed in this paper.

This suggests language extension capabilities will make the

job easier for other attempts to do a similar integration.

I0 Acknowledgments

We acknowledge the contributions of other members of the

DS1 Remote Agent team who have influenced the design of

the hybrid execution architecture: Doug Bernard and Sandy

Krasner. We thank John Bresina, Greg Dorais, Michael

Lowry, Rich Washington, and the anonymous reviewers for
useful comments on drafts of this text.

References

[1] Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.;

Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;

Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.; Smith,

B.; and Williams, B. C. 1998. Design of the remote agent

experiment for spacecraft autonomy. In Proceedings of the

IEEE Aerospace Conference. Snowmass, CO: IEEE.

[2] Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and Slack,

M. 1997. Experiences with an architecture for intelligent,

reactive agents. JETA[9(1).

[3]Brown,G.;Bernard,D.;andRasmussen,R. 1995.At-
titudeandarticulationcontrolforthecassinispacecraft:
A faulttoleranceoverview.In l_th AIAA/IEEE Digital
Avionics Systems Conference.

[41 Clocksin, W. F., and Mellish, C. S. 1981. Programming

in Prolog. Springer-Verlag: Berlin, Germany.

[5] Currie, K., and Tale, A. 1991. O-plan: the open planning

architecture. Art. Int. 52(1):49-86.

[6] de Giacomo, G.; Lesperance, Y.; and Levesque, H. 1997.

Reasoning about concurrent execution, prioritized inter-

rupts, and exogenous actions in the situation calculus. In
Procs. o/IJCAI-97, 1221-1226.

[7] de Kleer, J., and Williams, B. C. 1987. Diagnosing multi-

ple faults. Artificial Intelligence 32(1):97-130. Reprinted

in (Hamscher, Console, & de Kleer 1992).

[8] de Kleer, J., and Williams, B. C. 1989. Diagnosis with

behavioral modes. In Proceedings o/ IJCAI-89, 1324-

1330. Reprinted in (Hamscher, Console, & de Kleer 1992).

[9] Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An

argument for a hybrid HTN/operator-based approach to

planning. In Procs. o/the Fourth European Conference

on Planning.

[10] Ferguson, I. A. 1992. Touring Machines: An Architec-
ture for Dynamic, Rational, Mobile Agents. Ph.D. Disser-

tation, Computer Laboratory, University of Cambridge.

[11] Firby, R. J. 1978. Adaptive execution in complex dy-

namic worlds. Ph.D. Dissertation, Yale University.

[12] Freed, M., and Remington, R. 1997. Managing decision

resources in plan execution. In Proes. o/IJCAI-97, 322-
326.

[13] Gat, E. 1996. ESL: A language for supporting robust

plan execution in embedded autonomous agents. In Pryor,
L., ed., Procs. o/ the AAAI Fall Symposium on Plan Ex-
ecution. AAAI Press.

[14] Genesereth, M. R., and Nilsson, N. J. 1987. Logical

Foundations of Artificial Intelligence. Morgan Kaufmann:
Los Altos, CA.

[15] Georgeff, *I. P., and Lansky, A. L. 1986. A system

for reasoning in dynamic domains: Fault diagnosis on the

space shuttle. Technical Note 375, Artificial Intelligence

Center, SRI International.

[16] Georgeff, M. P., and Lansky, A. L. 1987. Procedural

knowledge. Technical Report 411, ArtificiaLIntelligence

Center, SRI International.

[17] Georgeff, M. P.; Lansky, A. L.; and Schoppers, /vI. J.

1987. Reasoning and planning in dynamic domains: An

experiment with a mobile robot. Technical Report 380,

Artificial Intelligence Center, SRI International.

[18] Hamscher, W.; Console, L.; and de Kleer, J. 1992.

Readings in Model-Based Diagnosis. San Mateo, CA:

Morgan Kaufinann.

[19] Hayes-Roth, B. 1995. An architecture for adaptive
intelligent systems. Art. Int. 72.

[2{)] Ingrand, F. F., and Georgeff, M. P. 1990. Mamaging

deliberation and reasoning in real-time ai systems. In

Procs. DARPA Workshop on Innovative Approaches to

Planning, Scheduling and Control, 284-291.

[21] Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and

Scherl, R. 1997. Golog: A logic programming language for

dynamic domains. Journal o/Logic Programming 31:59-
84.

[22] McDermott, D. 1993. A reactive plan language. Tech-

nical report, Computer Science Dept, Yale University.

[23] Muller, J., and Pischel, M. 1994. An architecture for

dynamically interacting agents. Int. Journal of Intelligent

and Cooperative Information Systems 3(1):25-45.

[24] Muscettola, N. 1994. HSTS: Integrating planning and

scheduling. In Fox, M., and Zweben, M., eds., Intelligent
Scheduling. Morgan Kaufmann.

[25] Ogasawara, G.H. 1991. A distributed, decision-

theoretic control system for a mobile robot. ACM

SIGART Bulletin 2(4):140-145.

[26] Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; bIuscet-

tola, N.; Nayak, P. P.; Wagner, M. D.; and Williams,

B. C. i997a. An autonomous spacecraft agent prototype.

In Johnson, W. L., ed., Proceedings o/the First Int'l Con-

ference on Autonomous Agents, 253-261. ACM Press.

[27] Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and

Smith, B. 1997b. Robust periodic planning and execution

for autonomous spacecraft. In Proes. o/IJCAI-g7.

[28] Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscet-

tola, N.; Nayak, P. P.; "Wagner, M. D.; and Williams,

B. C. 1998. An autonomous spacecraft agent prototype.

Autonomous Robotics 5(1). To Appear.

[29] Pollock, J. L. 1998. Planning agents. In Rao, A., and

Wooldridge, M., eds., Foundations o/ Rational Agency.
Kluwer.

[30] Schoppers, M. 1995. The use of dynamics in an intelli-

gent controller for a space faring rescue robot. Artificial

Intelligence 73(2):175-230.

[31] Simmons, R. 1990. An architecture for coordinating

planning, sensing, and action. In Procs. DARPA Work-

shop on Innovative Approaches to Planning, Scheduling
and Control, 292-297.

[32] Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.; and

Wesley, L. P. 1995. Planning and reacting in uncertain

and dynamic environments. JETA 1 7(1):197-227.

[33] Williams, B. C., and Nayak, P. P. 1996. A model-based

approach to reactive self-configuring systems. In Procs. of
AAAI-96, 971-978. Cambridge, Mass.: AAAI.

[34] Williams, B. C., and Nayak, P. P. 1997. A reactive

planner for a model-based executive. In Procs. of IJCAI-
97.

